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All ecologists are familiar with uncertainty, at least at

the level of whether they should reject a null hypo-

thesis. Uncertainty is, however, pervasive and its

characterization is essential if we are to understand our

effects on ecosystems. Traditional fisheries manage-

ment has a poor track record for confronting uncer-

tainty, but most management authorities are now

committed to a precautionary approach. As a result,

some of the most interesting methods for taking

account of uncertainty in ecological systems have been

developed by fisheries scientists. These methods evalu-

ate the relative performance of different management

procedures with the use of mathematical and statistical

models that synthesize knowledge and speculation

about the system of interest. Recent advances in com-

puter-intensive statistics have made it possible to com-

bine this approach with model fitting, so that the

uncertainties and risks associated with different out-

comes of management can be quantified. We show

how this methodology can be applied to a range of eco-

logical problems where the advice that scientists pro-

vide to decision makers is likely to be clouded by

uncertainty.

Policy makers and environmental managers frequently
ask ecologists for advice about the environmental con-
sequences of human activities. However, ecological sys-
tems are usually complex, nonlinear and strongly
influenced by stochasticity [1]. As a result, it is often
impossible to predict their dynamics in any detail. The
situation is complicated further because the available
information about the way that these systems function is
often equivocal.

Ecologists who seek to inform policy makers must distil
the results of complex analyses that predict uncertain
outcomes into simple and clear advice. They therefore face
a dilemma: do they present a simplification of the situation
that is persuasive but might pay insufficient attention to
the reliability of their conclusions; or do they emphasize
the UNCERTAINTIES (see Glossary) inherent in their
analysis [2]? The first option is likely to result in the
caveats associated with the advice being ignored, the
second is likely to result in the advice itself being ignored.
Even if the advice is accepted, a high degree of uncertainty
about the potential outcomes of management actions

provides many opportunities for confrontation among
different interest groups, and this can hinder the devel-
opment of consensus.

Some authors [3,4] have argued that the failure of
ecologists to explain adequately the uncertainties
associated with their advice has diminished their
influence on the decision-making process. Even if the
true situation is not as bad as this, ecologists should
improve the way that they provide advice about
uncertainty, not least because the general adoption of
the precautionary principle and precautionary approaches
to management (Box 1) requires an assessment of the RISK

that serious or irreversible environmental damage will
occur as a result of management actions. This risk is an
inevitable consequence of the uncertainties that are
inherent in our knowledge of ecological systems, and
ecologists must develop rigorous methods for evaluating
these uncertainties. Biology is not the only, and probably
not the most influential, discipline involved in decision
making about environmental issues [2], so methods that
can take account of the uncertainties associated with
advice from all relevant disciplines are needed [5].

The first step in quantifying risk is to identify the
sources of uncertainty (Box 2), but understanding the
implications of all these sources for particular manage-
ment actions is a much more challenging problem.

Glossary

Bayesian statistics: considers observations as known quantities that might

have been generated by a variety of processes. Distributions are assigned to

the parameters of these processes to enable inferences to be drawn about

them.

Frequentist statistics: considers observations to be the random results of an

underlying process with fixed but unknown parameters. Data are used to

estimate the values of these parameters, based on assumptions about the

statistical distributions from which the data were drawn.

Likelihood: the probability that a sample has been randomly drawn from a

particular probability distribution; it is treated as a function of the parameters

of this distribution.

Operating model: a plausible model of an ecological system used to test the

robustness of management procedures to uncertain system structures, and to

evaluate the tradeoffs between conflicting objectives.

Risk: the probability that a hazardous outcome will occur. It is a consequence

of uncertainty: if there is no uncertainty, the concept of risk is irrelevant

because the probability of the outcome is 1 or 0.

Uncertainty: incomplete information about a particular subject.

Utility: the value to society associated with a potential outcome of manage-

ment action; it can be arbitrarily assigned or arrived at by consensus among

stakeholders.
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Here, we describe the advances that fisheries scientists
have made in dealing with this problem and show how
their approach can be generalized into a rigorous
statistical framework. We also outline how this frame-
work can be used to provide advice about other
ecological problems that takes account of uncertainty
in a formal way, yet remains accessible to decision
makers.

Lessons learned from fisheries and whaling

The failure of fisheries managers to harvest fish stocks in a
sustainable way is often used as a textbook example of
what happens when inadequate account is taken of

Box 1. The precautionary principle and precautionary

approaches to management

The precautionary principle forms the basis for most European

environmental law [33], and is a fundamental component of several

international conventions [34]. Yet, it is not defined in the Treaty on

European Union (EU), and the most widely used definition [Principle

15 of the Declaration from the 1992 United Nations Conference on

Environment and Development (UNCED)] – ‘where there are threats

of serious or irreversible damage, lack of full scientific certainty shall

not be used as a reason for postponing cost-effective measures to

prevent environmental degradation’ – is vague [33].

A recent review by the Commission of the European

Communities (http://europa.eu.int/comm/dgs/health_consumer/

library/pub/pub07_en.pdf) has helped to clarify that, at least in

the EU, the precautionary principle should be applied within a

framework involving the assessment, management and communi-

cation of risk. The role of scientific advice in this process is to identify

the environmental HAZARDS (see Box Glossary) associated with a

particular issue, determine the exposure of sensitive components of

the ecosystem to these hazards and establish the potential

responses of the system to this exposure [11]. Using this

information, the performance of management procedures that

reduce exposure, or modify the exposure response, to an acceptable

level can be assessed. Establishing what level of risk is acceptable is

a political responsibility. The review also recommends that ‘when

the available data are inadequate or non-conclusive, a prudent and

cautious approach…could be to opt for the worst-case hypothesis’.

Unfortunately, this can result in the formulation of an escalating

series of increasingly pessimistic scenarios, because there is no limit

to these [2]. Combining the results of several worst-case scenarios

can result in risks being reduced to apparently tiny levels that are

hard to justify economically [35]. However, hazards that pose a low

risk to an average individual might pose a much higher risk to some

segment of the population, so this process might be much less

conservative than it appears [5].

We suggest that no scenario should be ignored, provided it can be

formulated into an operating model. The importance attached to the

results obtained under a particular scenario should be related in

some way to its plausibility [2], but it is not clear how plausibility

should be assessed. The obvious recourse to expert opinion is likely

to depend on the value system of the experts that are chosen [2].

In a parallel development to the refinement by the EU of the

precautionary principle, the UN Food and Agriculture Organisation

produced a set of guidelines for a precautionary approach to fisheries

management [36]. The guidelines recommend that managers:

† Avoid changes that are not potentially reversible;

† Identify undesirable outcomes and measures to avoid or correct

these changes;

† Act to conserve productive capacity where there is uncertainty;

† Limit fishing capacity when resource productivity is uncertain.

A crucial distinction between this approach and the precautionary

principle, at least in its EU incarnation, is that the undesirable

outcomes include economic and social consequences, as well as

environmental effects.

Box Glossary

Hazard: a potentially negative effect on the environment or human health as a

result of a particular activity.

Box 2. Sources of uncertainty

Although some authors [3,4] follow Smithson [37] in classifying

uncertainty as a (small) subset of ignorance, we prefer the standard

dictionary definitions of these terms that imply the reverse: that

ignorance is an extreme form of uncertainty. A particularly useful

distinction [38] is that between epistemic uncertainty (uncertainty in

things that can be measured) and linguistic uncertainty (uncertainty

in the language used to describe or classify desired states). Here, we

focus on the sources of epistemic uncertainty. They are:

(i) Process stochasticity [23], which is a consequence of demo-

graphic and environmental stochasticity, and the apparently

random behaviour of systems that have chaotic dynamics. It is

sometimes referred to as natural variation [38] or natural

stochasticity [39].

(ii) Observation error, which is made up of measurement error, a

consequence of the way in which observations are taken (e.g.

the choice of sampling strategy, or errors in data collection),

and estimation (or inference) error, which is the inaccuracy and

imprecision introduced by the method of statistical inference

used to estimate system parameters from observations.

(iii) Model error. All models are caricatures of reality and thus

provide an incomplete, and potentially misleading, represen-

tation of system dynamics. Model mis-specification has two

major consequences: (a) it can contribute to estimation error

through the inferential process; and (b) it will induce further

errors if the model is used in forecasting.

(iv) For managed systems, implementation error must be taken

into account. In a fisheries context, this might include failure to

meet proscribed limits on catches as a result of imperfect policy

implementation or changes in market forces that alter the

incentives for fishers. The introduction of economic effects [30]

adds a human dimension to uncertainty [40]. In a conservation

context, sources of implementation error include delays in the

establishment of protected areas, or inadequate protection

within them. More generally, implementation error attempts to

capture the consequences of what John Maynard Keynes

called ‘the insane and irrational springs of wickedness in most

men’[41].

Figure I shows how all these sources of uncertainty are

represented in an operating model framework. The text in italics

within each box indicates which sources of uncertainty are

accounted for by that sub-model.

Figure I.
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uncertainty in measurement, knowledge and the
implementation of regulations [6]. However, fisheries
scientists have recently made major advances in addres-
sing these problems by applying a conceptual framework
that has its origins in operational research. This has
enabled them to address many of the implications of
uncertainty in a rigorous and consistent way, and to
provide decision makers with information about the risks
associated with different management options.

Their approach involves developing computer models of
the underlying biological processes (the biological or
process model), the way that information is gathered
about these processes (the observation model) and the way
in which fisheries might affect these processes (the
management model). These are combined into an OPERAT-

ING MODEL (Box 2). The biological model attempts to
describe basic population processes (birth, death, growth
and migration) and the way that these are affected by
population size and environmental factors. The obser-
vation model mimics the activities of a virtual ecologist [7]
and reflects the way that data about the system are
collected and analyzed. It might be as simple as associating
an error structure with estimates of the abundance of the
target species but it can, for example, attempt to replicate
the way that the age structure of a population is estimated
from samples of fish taken by a commercial fishery. In the
latter case, it would include sub-models of the nonrandom
way that these samples were collected and of the errors
involved in determining the age of each individual. A
typical management model would include the way in
which data that have been processed through the
observation model are used to set quotas and the effect
of these quotas on the exploited population. These effects
would include the impacts of bycatches and the discarding
of fish that are caught but not landed.

Often, some of the most important underlying biological
processes are either poorly understood or can be described
adequately by many rival models. The potential effects of
climate change are an obvious example [2]. Rather than
trying to identify a single best model, ignorance is
accounted for explicitly by incorporating a wide range of
biologically plausible complexities into the operating
model. This is a form of scenario planning [8]. The
robustness of different management strategies to these
complexities is then assessed. Those strategies that
perform well across all scenarios are preferred over more
sensitive ones.

Once the structure of the operating model has been
agreed, repeated simulations of the entire model frame-
work are run, using randomized resampling from observed
or assumed probability distributions for the model
parameters. The results of these simulations are used to
generate frequency distributions for the various possible
outcomes, including information (known as performance
statistics) about the way in which the system performs
against the stated objectives of management. Statistics
can be extracted directly from the biological model and
compared with the equivalent values that are provided by
the observation models. This comparison might show, for
example, that estimates of population size derived from an
observation model based on data collected from the fishing

industry are relatively insensitive to changes in actual
abundance. In this case, a management approach based
solely on observations from the fishery would perform
badly if one of the objectives was to ensure that the
exploited population was unlikely to fall below a specified
reference level.

Management might have many objectives, some of
which are contradictory. If UTILITIES can be assigned to the
different objectives, decision analysis [9–12] can be used to
enable managers to compare the economic and social
benefits that are likely to accrue from different manage-
ment actions.

Decision analysis and the IWC

One of the first attempts to use this approach, which also
provides an illustration of what happens when utilities
cannot be assigned, was made by the Scientific Committee
of the International Whaling Commission (IWC). The
Committee was asked to develop a revised management
procedure for baleen whales [13] that would achieve three
management objectives: (i) stable catches; (ii) no serious
increase in the risk of extinction as a result of exploitation;
and (iii) highest continuing yields. The IWC did not
suggest what utilities should be attached to each of these
objectives, probably because member states had very
different views on this [1]. Instead, the Committee agreed
on a set of performance statistics that were used to
measure how well different management approaches
might achieve each of these objectives. Several manage-
ment procedures (a combination of the observation and
management models described in Box 2) were then
proposed by Committee members and simple operating
models were used to filter out those procedures that
performed particularly badly. The remaining procedures
were then refined and assessed using more complex
operating models that incorporated, for example, whale
social organization, spatial heterogeneity, the potential
effects of climate change and Allee effects. Although little
is known about the spatial structure of whale populations
or how climate change might affect their dynamics, the
Committee was able to formulate a range of plausible
models about both aspects of baleen whale population
biology. The management procedure that was finally
adopted performed well with all of these models.

Decision analysis and fisheries

The same framework is being used increasingly in the
southern hemisphere [9]. For example, the performance of
a range of management procedures for the eastern stock of
gemfish Rexea solandri off the coast of south-eastern
Australia was evaluated using age-structured operating
models [14]. There was considerable uncertainty about the
relationship between the recruitment of young fish and
abundance for this stock, so a range of forms and error
structures for this relationship was incorporated into the
operating model. A management procedure based on a
simple inference model was found to be preferable to one
that used detailed age information from the catch, even
though the latter resulted in higher average catches,
confirming the results of earlier theoretical analyses [15].
The simple procedure resulted in less variable catches and
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could be implemented with data that were relatively cheap
to collect.

Management procedures that have now been
implemented for five fish, shellfish and seal stocks along
the coast of southern Africa were evaluated using
operating models that incorporated environmental
change, environmental catastrophes, a range of values
for the basic biological parameters and different fishing
practice [16]. In four cases, this led to the adoption of
simple harvest rules based directly on the data collected
from the fisheries rather than on inferred quantities.

Incorporating and evaluating all sources of uncertainty:

the state-space framework

Operating models can be viewed as a framework for
statistical inference about the system as well as a way of
evaluating the performance of management strategies. In
this way, the properties of BAYESIAN statistical inference
(Box 3) can be used to combine the processes of parameter
estimation and risk assessment. Data collected as part of
the management procedure are used to refine prior
information about the distributions of the parameters of
interest to provide a joint probability distribution for all of
these parameters. This probability distribution accurately

reflects all of the major uncertainties about the system. It
can therefore be used to evaluate the uncertainties
associated with predictions of the potential outcomes of
different management actions. Combining estimation and
evaluation avoids many of the problems that are a
consequence of the independent estimation of individual
parameters. These include the need to make strong
assumptions about the underlying probability distri-
butions and covariance structure of the model parameters.

Two recent advances have made this combination
possible: the application of a state-space approach to
ecological problems [17,18], and the development of
computer-intensive statistical methods that can use
relatively sparse data to parameterize complex models
(Box 4). The basic state-space framework comprises a
process model and an observation model, just like the
operating models used by fisheries scientists. Model
uncertainty is accounted for in the same way, by using a
range of process models. In most ecological applications,
the process model is an age-structured or stage-structured
population model, which is often summarized in matrix
notation form [19]. A useful trick is to disaggregate this
matrix into a chain of sub-matrices that describe individ-
ual processes, such as survival, ageing, reproduction and
migration [20,21]. This makes it easier to implement
different process models. The final step is to add a series of
matrices that represent the management process [18].

The usefulness of Bayesian statistics for addressing
problems in fisheries and conservation has been described
in detail elsewhere [9,10,22–24]. The ability of Bayesian
statistics to take account of model uncertainty and
ignorance, and the fact that probabilities can be associated
with specific outcomes (e.g. that there is an x% probability
that the population will fall below some target level within
a particular timeframe) is particularly valuable. In
addition, complex process models that contain more
parameters than there are data points can be used if
appropriate prior distributions can be defined [10]. These
prior distributions are most informative if they are based
on data rather than on assumptions. They provide a useful
way to incorporate valuable biological observations, which
would otherwise be unsuitable for model fitting, into the
evaluation process. The extent to which the available data
support these complex models can be assessed by examin-
ing the posterior distributions (Box 3): if there is no
support in the data, the posterior distributions will be
identical to the priors. This comparison also provides a
way to assess the plausibility of different biological
models (Box 2). Finally, individual prior distributions
can be manipulated to determine the most cost-effective
way of reducing the uncertainties associated with pre-
dicted outcomes.

There is still considerable debate about the appropri-
ateness of Bayesian statistics in ecology [22,25]. Fortu-
nately, it is possible to implement the same framework
using conventional FREQUENTIST or LIKELIHOOD-based
approaches [2,26].

Lessons for ecology

The approach used by the IWC in formulating the revised
management procedure has also been used to develop a

Box 3. Bayesian statistical inference

Bayesian statisticians are concerned with the support provided by

observation (symbolized by a vector D) for different models (Hi) that

have been developed to describe the system of interest, or for the

parameters (u) of these models,. This support is often represented as

P{HilD} or P{ulD}. Conventional frequentist statisticians are con-

cerned with P{DlHi}, the probability of obtaining the observed data

under Hi. They reject Hi as an explanation of the data if this probability

is less than some arbitrarily defined level (usually 5% or 1%). P{ulD}

(the posterior distribution) can be derived using Bayes theorem from

Eqn I:

P{ ulD} ¼ P{ u}P{ Dlu}=k ½I�

P{Dlu} is the likelihood for u and k is a normalizing constant (Eqn II)

k ¼
ð

P{ u}P{ Dlu}du ½II�

P{u} (the prior distribution) represents our current information about

the distribution of u. It can be based on actual data, or on a subjective

assessment of what is likely. In principle, this is an effective way of

taking account of ignorance, but it is important to determine the

sensitivity of results to the prior distributions that have been used,

especially when these are based on opinion rather than data.

Unfortunately, this warning is more frequently issued than it is

observed. The use of priors that appear to have been chosen

arbitrarily is probably one of the major reasons why biologists are

suspicious of the Bayesian approach, because it seems to provide

something for nothing. When priors are based on opinion rather than

data, a variety of different priors must be tried before the results of the

analysis are accepted. If those results are sensitive to the choice of

prior, and they often are, then every effort should be made to find

additional sources of information that can be used to form a more

justifiable prior distribution. This can result in more biological

information being incorporated into a Bayesian analysis than would

ever be possible using a frequentist approach.

To estimate k (Eqn II), the entire area under the likelihood

distribution must be evaluated, whereas a frequentist analysis

requires only the maximum value of the likelihood. In most cases,

the integral cannot be obtained analytically and computer-intensive,

numerical techniques must be used (Box 4).
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methodology for assessing the conservation status of
marine mammals in the USA [27], and to compare the
effectiveness of different management strategies for the
saiga antelope Saiga tatarica [28]. However, the frame-
work that we have described here is applicable to a wide
range of ecological problems. For example, it offers an
alternative to the methods currently used [29] to take
account of uncertainty when assigning species to the
categories for conservation status developed by the World
Conservation Union (IUCN).

In almost every case where this approach has been used
[13–15,28], the most successful management procedures
have been those that use observational information
directly, rather than using it to estimate the parameters
of a detailed biologically model. These findings add weight
to recent calls [30] for simple robust conservation
strategies that have relatively low data demands. This
does not mean, however, that detailed ecological infor-
mation is unnecessary for effective management. The
operating model framework is one of the most efficient
ways to assess the robustness of competing management
strategies. But, it is only effective if models of the
underlying biological processes that take account of the
best scientific knowledge, and the uncertainties associated
with this knowledge, are available to test the robustness of
different management strategies.

What next?

Computer-intensive risk assessment of the kind that we
have described here provides a valuable decision support
tool that enables the precautionary principle to be
implemented in a rigorous and scientific way. Although
there is some evidence that decision makers find advice
that is couched in terms of probabilities difficult to
assimilate [31], this is primarily a problem of presentation.
Certainly, advice about the threats posed by variant
Creutzfeldt-Jakob disease was readily accepted by
decision makers, in spite of the massive uncertainties
associated with the original risk assessments [32].
However, there is no doubt that the mathematical and
statistical theory associated with the framework that we
have described here can be intimidating, and most
ecologists would balk at implementing it without expert
advice. Computer packages to apply some of the tech-
niques are now available, but even these require consider-
able experience if they are to be applied effectively (Box 4).
We need user-friendly software that will enable ecologists
to assemble operating models without having to recast
their biological knowledge in matrix form, and that will
help them chose appropriate prior distributions and
search algorithms for use in their assessments.
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