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Abstract Movement patterns of highly mobile animals
can reveal life history strategies and ecological relation-
ships. We hypothesized that wolves (Canis lupus) would
display similar movement patterns as their prey, barren-
ground caribou (Rangifer tarandus groenlandicus), and
that movements of the two species would co-vary with
season. We tested for interspecific movement dynamics
using animal locations from wolves and caribou monitored
concurrently from mid-October to June, across the
Northwest Territories and Nunavut, Canada. We used a
correlated random walk as a null model to test for pattern
in movements and the bearing procedure to detect whether
movements were consistently directional. There was a
statistical difference between the movements of caribou
and wolves (F; ¢ = 13.232, P = 0.005), when compared to
a correlated random walk, and a significant interaction
effect between season and species (Fj¢ = 6.815, P =
0.028). During winter, the movements of caribou were strongly
correlated with the 80°-90° (X r = 0.859, SE = 0.065) and
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270°-280° (X r = 0.875, SE = 0.059) bearing classes
suggesting an east—-west movement gradient. Wolf move-
ments during winter showed large variation in direction,
but were generally east to west. Peak mean correlation for
caribou movements during spring was distinct at 40°-50°
(X r=10.978, SE = 0.006) revealing movement to the
north-east calving grounds. During spring, wolf move-
ments correlated with the 80°-90° (X r = 0.861,
SE = 0.043) and 270°-280° (X r = 0.850, SE = 0.064)
bearing class. Directionality of movement suggested that
during winter, caribou and wolves had a similar distribu-
tion at the large spatial scales we tested. During spring
migration, however, caribou and wolves employed asyn-
chronous movement strategies. Our findings demonstrate
the utility of the correlated random walk and bearing
procedure for quantifying the movement patterns of co-
occurring species.

Keywords Bearing analysis - Canis lupus -
Correlated random walk - Movement path -
Rangifer tarandus groenlandicus

Introduction

Spatiotemporal variation in the distribution of organisms is
one of the primary mechanisms underlying evolutionary
and ecological processes. The simple act of movement
often has been quoted as the ‘glue’ that relates population
dynamics to ecological processes (Turchin 1998; Cagnacci
et al. 2010). Studies of movement dynamics of wide-
ranging mammals have increased with the availability of
new tracking technologies such as satellite or GPS collars
(Hebblewhite and Haydon 2010). When connected via line
segments, a time series of frequent location data can
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approximate movement paths. A number of techniques—
correlated random walk (Kareiva and Shigesada 1983;
Turchin 1998), fractal dimension (With 1994; Nams and
Bourgeois 2004), first-passage time analysis (Fauchald and
Tverra 2003; Bailleul et al. 2010), and Lévy flight (Vi-
swanathan et al. 1999; Schreier and Grove 2010)—are
available for quantifying the shape and scale of these paths.

Movement paths can be compared among individuals
within a population and among species to reveal patterns or
strategies for locating and using resources, interspecific
interactions, or the influence of human activities on the
distribution of animals (Whittington et al. 2004; Bailey and
Thompson 2006; Brooks and Harris 2008). For example,
movement paths of large herbivores have been observed to
change between large-scale excursions and fine-scale
movements related to foraging (Morales and Ellner 2002;
Johnson et al. 2002a). Such movement mechanics likely
apply across a range of spatiotemporal scales. As illustrated
by Fryxell et al. (2008), herbivores will demonstrate vari-
ation in movement according to internal conditions and
external stimuli, and these responses will vary according to
the period of exposure.

Considering predation as an external stimulus for
movement response, researchers have reported a relation-
ship between the distribution and movements of herbivores
and areas of high predation risk (Johnson et al. 2002a;
Fortin et al. 2005; Hebblewhite and Merrill 2007; Briand
et al. 2009; Gervazi et al. 2013). These works have dem-
onstrated that predation risk is seasonally and temporally
variable and that herbivores can modify their behaviour in
response to this variability. Furthermore, such variation in
risk can have direct implications for individual fitness and
population productivity leading to ecological and evolu-
tionary outcomes (Creel et al. 2007; Whittington et al.
2011). Unfortunately, the majority of studies designed to
understand the spatial interactions of co-occurring species
have focused on the recorded movement of one species and
the inferred distribution of the second. Rarely are the
movements of two or more species monitored and com-
pared concurrently (but see Creel et al. 2005; Laundré
2010). Such comparisons of the distribution of predator and
prey are necessary for testing an extensive body of theory
that provides general explanation for the behaviour and
outcomes of predator—prey interactions (Sih 1984; Brown
et al. 1999; Mitchell 2009).

The wolf (Canis lupus), although extensively studied
throughout much of North America and Europe (Messier
1985; Hayes and Harestad 2000; Cuicci et al. 2003;
McPhee et al. 2012; Sand et al. 2012), has seldom been
examined at the northern extents of its range where it
resides along and above the treeline (Walton et al. 2001).
The movements of these tundra wolves differ from those
found in forested habitats in that they do not maintain a
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defendable, stable home range (Walton et al. 2001; Musi-
ani 2003). Due to the migratory nature of their primary
prey, the barren-ground caribou (Rangifer
groenlandicus), wolves are assumed to move with these
herds during most of the year and thus maintain relatively
large seasonal ranges (Cluff et al. 2002; Musiani 2003;
Mattson et al. 2009). During spring and early summer,
however, reproducing wolves are constrained to den sites
near treeline where they must support altricial pups while
caribou migrate farther north to calving grounds (Heard
and Williams 1992; Walton et al. 2001). Alternative prey is
few for wolves during these seasons, with muskox (Ovibos
moschatus), Arctic hare (Lepus arcticus), and Arctic
ground squirrel (Urocitellus parryii) being at relatively low
densities near den sites (Fournier and Gunn 1998; Frame
et al. 2004).

The movements and hunting behaviours of tundra
wolves during winter are not well understood. Wolves may
closely track their prey within and among seasons (Berg-
man et al. 2006). Alternatively, wolves may employ a
range of behavioural search strategies for caribou and only
demonstrate concurrent movements at some spatial scales
or portions of caribou range (Williamson Ehlers 2012).
This relationship is likely complicated by avoidance
responses of caribou to direct and indirect predation risk
(Johnson et al. 2002b; Kittle et al. 2008; Briand et al. 2009;
Pinard et al. 2011; Whittington et al. 2011).

In this study, we examined the movements of wolves in
the Canadian central Arctic relative to barren-ground car-
ibou. We assumed that movement paths would serve as a
measure of hunting behaviour by wolves at the scale of the
seasonal range. This scale of analysis represented co-
varying seasonal movements and distribution not the patch
choice and avoidance decisions of caribou or wolves
(Laundré 2010). We analysed movement of wolves and
caribou during the winter and spring. For both species,
winter is a time of relatively sedentary movements focused
on hunting and foraging, while spring involves large-scale
migration to distant calving/denning areas (Gunn et al.
2001; Walton et al. 2001; Cluff et al. 2002).

We began by testing the relationship between the
movement paths of individual caribou and wolves and a
correlated random walk (CRW). Given the south to north
migration to calving and denning habitats during spring, we
used the bearing procedure to test movement paths for
consistent directionality within and between seasons
(Rosenberg 2000). We hypothesized that caribou move-
ment may be a primary driving force behind wolf search
strategies, and thus, movement should be similar in both
pattern and directionality. If wolf movement mimics that of
the only large prey, we would conclude that wolves were
engaging in behaviours that allowed them to associate
closely in space and time with the distribution of caribou. If
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wolf movement differed from that of the caribou, wolves
may be employing an alternative search strategy that is not
premised on continual reference to large groups of win-
tering or migrating caribou.

Materials and methods
Study area

From 1997 to 2000, caribou from the Bathurst herd and co-
occurring wolves were captured and monitored, north-east
of Yellowknife, Northwest Territories, Canada (see Gunn
et al. 2001; Walton et al. 2001; Barrier and Johnson 2012;
Fig. 1). The winter distribution of caribou constitutes the
largest seasonal range at approximately 256,000 km?. At
the time of the study, the Bathurst herd consisted of
approximately 349,000 individuals (£94,900 SE; Adam-
czewski et al. 2009). However, the herd was likely in
decline during that period as 186,005 (£15,990 SE; Gunn
et al. 2005) animals were estimated in 2003.

The study area encompasses low arctic tundra in the
northern region, and forest tundra and northern boreal
forest in the southern region. Dominant shrub and tree
species include Salix spp., Vaccinium spp. and Picea ma-
riana, P. glauca, and Pinus banksiana. The topography is
gently sloped with frequent rock outcrops and glacial-flu-
vial landscape features such as eskers (see Walton et al.
2001). Winter temperatures often fall below —30 °C, and

the region receives a yearly average of 151 cm of snowfall
(Environment Canada 2006).

Wolf and caribou movement paths

Wolves were located in early June at den sites and fitted
with Argos-certified satellite collars (Telonics ST-10 and
ST-14 models). Selection of wolves for collaring was
dependent on terrain; also, capture crews attempted to
collar at least 1 breeding adult in each pack sampled (see
Walton et al. 2001). Collars were scheduled to generate
approximately 1 location every 4 days. Monitoring for this
study ended in the summer of 1999.

Female caribou were captured and collared during the
late fall and winter of 1996-1998 (Gunn et al. 2001). As
with wolves, capture crews employed a quasi-random
encounter-based sampling protocol. Caribou were collared
with Argos-certified satellite collars (Telonics ST-10
model). Collars were scheduled to generate approximately
1 location every 5 days.

To detect changes in movement paths due to seasonal
behavioural patterns, seasons were segregated by date
based on previous studies of migratory movements of the
monitored wolves (Walton et al. 2001; Musiani 2003) and
annual movements of barren-ground caribou (Gunn et al.
2001). We defined the winter season as occurring between
October 16 and March 15, and the spring season as March
16-June 1. The spring season began earlier than defined by
Gunn et al. (2001) for caribou, but accommodated the

Fig. 1 Study area for
movements of barren-ground
caribou of the Bathurst herd and
a co-occurring wolf population,
Northwest Territories and
Nunavut Territory, Canada.
Seasonal movement locations
and inferred paths of example
caribou and a wolf are

Coronation Gulf

presented. The annual range of
the Bathurst herd is delineated
by a 95 % minimum convex
polygon and is centred at
approximately 64°17'36.49"N
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northward movement of wolves in late March and allowed
for sufficient sample size of animal movements for that
relatively shorter time period. We included wolf or caribou
locations of class (LC) 1 or better (<1,500 m error radius;
Argos 2008) and LC A; although not associated with an
accuracy estimate, LC A locations have been shown to be
similar in accuracy to LC 1 locations (Vincent et al. 2002).
We generated movement paths for 6 wolves from indi-
vidual packs, and 5 caribou monitored over the winter and
spring of 1998/1999. Each of the animals had between 30
and 38 reliable locations during winter and 16-20 during
the spring.

Correlated random walk

We used the CRW to quantify the inferred movement paths
of caribou and wolves. A CRW represents a theoretical
movement strategy where each successive move occurs in a
random direction that is correlated with the most recent
movement. For many applications in ecology, the observed
movement is compared to the expected net displacement of a
movement path generated from a CRW (Bergman et al.
2000). The animal demonstrates a more tortuous movement
path when the observed movement is less than that predicted
by a CRW. Likewise, if the movement path exceeds the
displacement expected from a CRW, the animal is assumed
to be pursuing a more linear movement strategy (Kareiva and
Shigesada 1983). When proposed as a model of animal
movement, the CRW can serve as a null test against which
more complex scale-specific decision-making processes can
be assessed. Also, a CRW can serve as a standardized mea-
sure of movement paths that can be compared among indi-
viduals, populations, or species (Turchin 1996; Marell et al.
2002; Nams and Bourgeois 2004).

The CRW analysis assumes independence between length
of movement steps and turning angle between each step
(Kareiva and Shigesada 1983; Turchin 1998). There is no
accepted measure of independence for this analysis, and
other tests can be excessively conservative (McNay et al.
1994). Considering the long interval between successive
animal locations, minimum of 4 days for wolves and 5 days
for caribou, we assumed independence. To test the hypoth-
esis of a CRW for collared caribou and wolves, we compared
the squared net displacement of the actual movement path to
that of a CRW. The net displacement of a movement path can
be less or greater than that expected for a CRW. Such devi-
ations can be measured using the CRW g, test statistic: the
scaled difference between the expected and observed
squared distance travelled, averaged over a range of steps
travelled (see Appendix 1 Nams 2006a). The CRWp;¢rcan be
a negative or positive value with O representing a true CRW
(Nams 2006b). Negative CRWp¢r values indicate that the
movement path has a shorter net displacement and thus less
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directionality than a CRW or a path with a positive CRWp;
value (Nams 2006b). Relative to some techniques for
quantifying animal movement (e.g. Johnson et al. 2006), the
calculation of the CRWpy;y; is robust to few animal locations
and resulting path segments (Nams 2006b) and produces an
easily interpretable measure of deviation from the null
hypothesis. Error estimates and a P value for a test for sig-
nificance are provided by the net distance function (Fractal
5 v.5.05, Nams 2006a).

Direction analysis

We used the bearing procedure to quantify the direction of
movement for each animal (Rosenberg 2000). The procedure
used a Mantel test to generate a correlation between the
directionality of pairs of successive movements and a pre-
determined compass bearing. The largest positive correla-
tion suggested the dominant direction of movement for
caribou and wolves. As with the CRW, the bearing procedure
was robust to low sample sizes and thus provided an inter-
pretable measure of spatial direction for the animals we
monitored in this study (Rosenberg 2000). We specified the
bearing procedure be performed on 18 set bearings each
differing by 10 degrees. Directionality was oriented across a
180° arc of movement from west (270°-280°) to north (0°) to
east (80°-90°). Because caribou were at the southern extent
of their distribution during winter, a strong correlation
between paired locations and 0° (fixed bearing of north—
south) suggested a northerly direction of movement. Ani-
mals were pooled by season, and the correlation measures, ,
were averaged for each bearing class. Calculations were
performed using PASSaGE v.1.1 (Rosenberg 2001).

Statistical comparison of movements

We used repeated measures ANOVA to test for mean
differences in CRWpyg statistics. Where sphericity was
violated (Mauchly’s test), we used the Greenhouse—Geisser
or Huynh-Feldt corrected degrees of freedom. Season
served as a within subject effect, and species was tested as
a between-subjects effect. Due to a relatively small sample
of animal locations, we used a Pearson’s correlation to test
for a relationship between the number of locations for each
path and the corresponding CRWp; measure. We con-
sidered results with P < 0.05 as statistically significant.

Results
Correlated random walk

During winter and spring, both caribou and wolves dem-
onstrated extensive movements across the central Arctic
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study area (Fig. 1). However, the majority of caribou and
wolf paths in both seasons did not differ significantly from
a CRW (Fig. 2). Movement paths that differed from CRWs
occurred more frequently in the spring. In general, caribou
produced CRWp¢; values that were negative, especially in
the spring season, while wolves’ CRWp were almost
always positive (Fig. 2). This trend of negative and posi-
tive values suggested that the squared net displacement of
caribou and wolves was less and greater, respectively, than
expected from individuals demonstrating a CRW. Average
CRWpy¢r values differed statistically between caribou and
wolves (Fjo = 13.232, P = 0.005). Movement paths did
not differ significantly between seasons for either caribou
or wolves (F 9 = 3.638, P = 0.089), but there was a sig-
nificant interaction effect between season and species
(F19 = 6.815, P = 0.028; Fig. 3). There was no signifi-
cant relationship between number of animal locations and
CRWp;s values (r = 0.348, P = 0.112).

Direction analysis

The directionality analysis revealed differences in corre-
lation of turning angles between the winter and spring
seasons and species (Fig. 4). Caribou movement during
the winter was strongly correlated with the 80°-90° and
270°-280° bearing classes (respectively, mean (X) r =
0.859, SE = 0.065 and X r = 0.875, SE = 0.059; Fig. 4).
This suggested an east—west movement gradient. Peak
mean correlation for caribou during spring was distinct
at 40°-50° with little variation around the mean (X
r = 0.978, SE = 0.006), suggesting focused movement to
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Fig. 2 Mean (£1 SE) deviation from a correlated random walk
(CRWhpyjg) for individual caribou and wolves monitored in the
Northwest Territories and Nunavut Territory, Canada, during
1998/1999 for the winter (Opened circle) and spring (Filled circle)
seasons. Zero indicates a true CRW. Plots marked with asterisk
indicate the movement path differed significantly from a CRW

the north-east. During spring, wolves demonstrated peak
mean correlation values at 80°-90° (X r = 0.861, SE =
0.043) and 270°-280° (X r = 0.850, SE = 0.064), sug-
gesting movement focused in an east—west manner (Fig. 4).
Wolf directionality in the winter showed large variation,
yet slight peaks in correlation were evident at 80°-90° and
270°-300°, similar to movements during spring and that of
caribou in the winter (Fig. 4).

Discussion

A CRW is a valid yet simple strategy for animals seeking
resources in a heterogeneous environment. However, a
CRW may be strongly dependent on external and internal
stimuli that vary across a range of observational or
behavioural scales—from the individual foraging decision
to movement among seasonal ranges (Fryxell et al. 2008).
For example, Brooks and Harris (2008) found intrapopu-
lation differences in the CRW demonstrated by zebra
(Equus burchelli antiquorum). Alternatively, Marell et al.
(2002) did not test for a CRWpy;g, but reported that for
many observation scales, the movement of semi-domesti-
cated reindeer (R. t. tarandus) exceeded the net squared
displacement expected from a CRW. Frost et al. (2009)
reported that a CRW was the least accurate of a set of
models designed to represent the movements of deer
(Odocoileus virginianus and O. hemionus).

Applying a CRW to the movements of woodland cari-
bou (R. t. caribou), Bergman et al. (2000) reported similar
results to our findings. They suggested that a CRW may be
the most efficient strategy for locating forage, primarily
dominated by terrestrial lichens, during winter. The popu-
lation of barren-ground caribou in this study was likely in

1.5
1.0
0.5

0.0

CRWDiff

caribou wolf
Species

Fig. 3 Mean (£95 % CI) deviation from a correlated random walk
(CRWpyg) for barren-ground caribou and wolves during the
1998/1999 winter (Opened square) and spring (Filled circle) seasons
in the Northwest Territories and Nunavut Territory, Canada
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Fig. 4 Mean (£1 SE) correlation of movement path with bearing
class for wolves (Filled circle) and barren-ground caribou (Opened
circle) monitored during winter (fop) and spring (bottom) in the
Northwest Territories and Nunavut Territory, Canada. Degree nota-
tion follows typical compass bearings, where west is 270°-280°, north
is 0°, and east is 80°-90°. Lines connecting means were retained for
clarity in following trends by species

decline, but still at a relatively high density (~349,000);
thus, there was the potential to overgraze lichens if for-
aging was concentrated in any one place for an extended
period of time (Arseneault et al. 1997). Also, the multi-year
winter range of the Bathurst caribou herd was large
(~246,000 km?) and dynamic, being influenced by wild-
fire. These factors suggest a patchy distribution of terres-
trial lichen (Barrier and Johnson 2012). Adopting a random
movement and search strategy may help ensure that cari-
bou disperse widely across their winter range, increasing
the likelihood of finding forest stands not recently burned
or grazed heavily in past years.

The pattern of caribou movements were inconsistent
with our expectation for the spring. During that season,
female caribou have a relatively short period of time to
reach distant (400-600 km) calving grounds where syn-
chronous births reduce the risk of predation and may
maximize the nutritional gain from emerging plants
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(Dauphiné and McClure 1974; Post et al. 2003). Thus, we
expected spring movements to be less tortuous (positive
CRWpj¢) and in the direction of the northern calving
ground. The values for spring were on average negative,
although not significantly for the majority of caribou,
suggesting shorter more tortuous paths.

We suspect that the contradiction between our hypoth-
esis, positive CRWpy, and observed data is a function of
the ‘spring’ season incorporating multiple interseasonal
behaviours. The scale of observation is important when
testing whether a movement path is consistent with a CRW
(Marell et al. 2002; Nams 2006b). Migration to the calving
ground occurred over a large area and a relatively short
time period. Our definition of spring movement inadver-
tently included locations of caribou that were associated
with non-migratory behaviour. Russell et al. (1993) iden-
tified 15 periods in the annual life cycle of the migratory
Porcupine caribou herd. They defined both a ‘spring’ and
‘spring migration’ season for the period that we considered
as spring migration. More recently, Gunn and Poole (2010)
redefined the spring migration period for caribou (not
wolves) as beginning in mid-April, 4 weeks after the date
that we adopted. One caribou we tracked was likely barren
and did not proceed to the calving ground (Fig. 1; caribou
127; Gunn et al. 2008). As we might expect, this animal
had a relatively large negative CRWps value. Although
counterintuitive relative to our hypothesis, these findings
illustrate the power of the CRWpy; statistic to elucidate
multi-scale behaviours and identify seasonal patterns of
movement for migratory animals (Nams 2006b).

The movement paths of wolves generally approximated
a CRW during winter. Caribou adopted a CRW during this
season; thus, it is reasonable to assume their predators did
as well. A broad-scale association between the distribution
and movements of wolves and caribou on the Bathurst
herd’s annual range also was noted by Walton et al. (2001).
Where wolves were not tracking groups of caribou directly,
they may have increased their likelihood of intercepting
prey and prey sign, including prey scent, by adopting a
search strategy that mimicked caribou movements.

The CRWpy test statistic for wolf movements during
spring was on average slightly more positive than winter
movements. This resulted from the actual path being longer
than a CRW model would predict (Nams 2006b) and
indicated more straight-line movement. Zollner and Lima
(1999) reported that some element of nearly straight
movements is an effective search strategy for resources,
such as groups of migrating caribou. The spring is an
energetically demanding season with the pregnant females
preparing for parturition and rearing of pups at dens that
are on average 200 km to the south of the caribou’s calving
range (Heard and Williams 1992). Increased movement, if
associated with hunting, may be a final effort to secure



Polar Biol

food resources while caribou are still accessible. Alterna-
tively, wolves may employ increased straight-line move-
ment to quickly gain access to denning habitat prior to
parturition.

In general, caribou and wolf movements during winter
were directed in an east—west direction. This possibly
allowed fuller use of the winter range that was oriented in
a similar direction along the treeline (Fig. 1). With the
onset of spring, most caribou focused their movements in
a north-east direction. This corresponded with the known
migration to calving grounds located to the north of the
winter range (Gunn et al. 2001). Although we hypothe-
sized that wolves would follow migrating caribou, we did
not record a similar direction of movement. Wolves can
travel >250 km to dens north of treeline (Walton et al.
2001), but they did not follow caribou to the more
northerly calving grounds. Reproductive wolves were
constrained to more southerly areas with a combination of
suitable soils for digging dens and a greater temporal
likelihood of encountering caribou moving both north and
later south (Heard and Williams 1992; McLoughlin et al.
2004).

Aerial surveys have confirmed that collared caribou
represent the distribution of the Bathurst caribou herd on
the winter range (Mattson et al. 2009). For this work,
however, we monitored only a very small fraction of the
herd. Thus, it is difficult to identify general patterns of
movement for caribou that apply across this or other pop-
ulations of herbivores. We monitored wolves from 6 packs
likely representing a much larger percentage of that pop-
ulation, although we have no data to suggest total number
of packs on the winter range during the study period.
Regardless of sample size and the generality of the find-
ings, our application of the CRW and bearing procedures
provided insight on the usefulness of these techniques for
other populations where it is not possible to collect fre-
quent animal locations and construct detailed movement
paths.

The CRW and bearing analyses provide some insights
on movement pattern and by inference animal distribution,
but they do not reveal the mechanisms for such patterns.
We would gain a deeper understanding of caribou—wolf
interactions if we combined the description of movement
direction and displacement with parameters influencing
behaviour. As examples of those process-related parame-
ters, Johnson et al. (2002a) reported that predation risk
altered the movements of woodland caribou across spatial
scale and Kunkel and Pletscher (2001) found that envi-
ronmental features such as snow depth and hiding/stalking
cover influenced predation strategy. Where fine-scale data
are available, such environmental responses could be
investigated using empirically based state-space models
(Patterson et al. 2008).
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