Genetic variability in natural populations of the gray wolf, Canis lupus

PHYLLIS K. KENNEDY AND MICHAEL L. KENNEDY

Meeman Biological Station and Department of Biology, Memphis State University, Memphis, TN 38152, U.S.A.

PETER L. CLARKSON AND ILME S. LIEPINS

Department of Renewable Resources, Inuvik, N.W.T., Canada X0E 0T0

Received March 22, 1990

KENNEDY, P. K., KENNEDY, M. L., CLARKSON, P. L., and LIEPINS, I. S. 1991. Genetic variability in natural populations of the gray wolf, Canis lupus. Can. J. Zool. 69: 1183-1188.

The genetic variability of gray wolves (Canis lupus) from northwestern Canada was assessed through starch-gel electrophoresis. Of 27 protein systems examined, 25, representing 37 presumptive loci, were consistently scorable; 7 proteins (5 were consistently scorable) exhibited polymorphism. The level of heterozygosity (3.0%) was medial relative to values reported for natural populations of Carnivora and high relative to values reported for natural populations of canids. An overall pattern of few deviations from Hardy-Weinberg expectations and some spatial heterogeneity was observed. Wolves associated with different caribou herds exhibited a low level of differentiation ($F_{ST} = 0.029$). The pattern of variability supports the view of a large panmictic population resulting from extensive movements of individuals and packs and from natural and human impacts on pack

KENNEDY, P. K., KENNEDY, M. L., CLARKSON, P. L., et LIEPINS, I. S. 1991. Genetic variability in natural populations of the

L'électrophorèse sur gel d'amidon a été utilisée pour évaluer la variabilité génétique des Loups (Canis lupus) du Nord-Ouest canadien. Des 27 systèmes de protéines examinés, 25, représentant 37 locus possibles, étaient toujours mesurables; 7 protéines (5 toujours mesurables) étaient polymorphes. L'hétérozygotie (3,0%) était moyenne comparativement aux valeurs signalées dans les populations naturelles de carnirvores et élevée comparativement aux valeurs signalées chez les populations naturelles de canidés. Dans l'ensemble, il y avait peu d'écart de l'équilibre Hardy-Weinberg et un peu d'hétérogénéité spatiale a été observée. Les loups associés aux différents troupeaux de caribous montraient peu de différenciation ($F_{ST} = 0,029$). Cette variabilité semble indicatrice d'une grande population panmictique résultant des déplacements importants de certains individus et de certaines hordes et aussi de l'impact des phénomènes naturels et de l'activité humaine sur la structure et la formation des hordes.

[Traduit par la rédaction]

The genetic variability of gray wolves (Canis lupus) from nor Of 27 protein systems examined, 25, representing 37 presumption scorable) exhibited polymorphism. The level of heterozygo populations of Carnivora and high relative to values report deviations from Hardy-Weinberg expectations and some spaticaribou herds exhibited a low level of differentiation (F_{ST} = panmictic population resulting from extensive movements of instructure and formation.

KENNEDY, P. K., KENNEDY, M. L., CLARKSON, P. L., et LIE gray wolf, Canis lupus. Can. J. Zool. 69: 1183–1188.

L'électrophorèse sur gel d'amidon a été utilisée pour évalue canadien. Des 27 systèmes de protéines examinés, 25, représe (5 toujours mesurables) étaient polymorphes. L'hétérozygotie les populations naturelles de carnirvores et élevée comparaticanidés. Dans l'ensemble, il y avait peu d'écart de l'équilibre les loups associés aux différents troupeaux de caribous montraindicatrice d'une grande population panmictique résultant de hordes et aussi de l'impact des phénomènes naturels et de l'a structure of wolves (Canis) produces a population structure with the potential for rapid evolution. Wolves generally live in packs (Paradiso and Nowak 1982), which divides populations into small units. Independent evolution in small units of a population depends on the amount of gene flow among units, differences in selection pressures among units and random genetic drift within units as well as on the effective population size of each unit (Wright 1978). If gene flow among units was absent or very limited and if the environment was perceived as homogeneous for all units, genetic variation would decrease toward fixation within units because of genetic drift; genetic variation within the total population would increase as a result of fixation of one allele in one unit and an alternate allele in another unit. within the total population would increase as a result of fixation of one allele in one unit and an alternate allele in another unit. Woolpy and Eckstrand (1979) propose this scenario for wolves. On the basis of computer simulations using different effective population sizes and different levels of emigration and immigration for wolf packs, they estimated a fixation time of approximately 20 years for an "average locus in the average pack." They suggest that the wolf is highly inbred, with loss of genetic variation within packs and genetic distinction between adjacent packs. Thus, the gray wolf (Canis lupus) would be genetically variable as a species but the level of heterozygosity for the species would be very low.

Little information on the genetic composition of wolf populations is available, and even less is known about natural (= noncaptive) populations (Braend and Roed 1987; Clark et al. 1975; Ferrell et al. 1980; Fisher et al. 1976; Mardini 1984; Simonsen 1976). Genetic analysis of canids has primarily

focused on taxonomic relationships within the Canidae or the Carnivora (e.g., Braend and Roed 1987; Clark et al. 1975; Ferrell et al. 1980; Fisher et al. 1976; Nobrega et al. 1970; Seal 1969, 1975; Serov et al. 1976; Simonsen 1976, 1982; Wayne and O'Brien 1987). A few studies offer estimates of genetic variability in natural populations of canids (Ferrell et al. 1980; Hamilton and Kennedy 1986; Simonsen 1982) and generally support Seal's (1975) assessment of limited genetic variability within canid species. Fisher et al. (1976) examined intraspecific as well as interspecific genetic variation for three species of canids, including C. lupus. Their study involved a large number of loci but small numbers of individuals, primarily from zoos. Braend and Roed (1987) examined two loci in a large sample of gray wolves from Alaska but focused on relationships between dogs and wolves. These two studies indicate genetic variability within C. lupus; however, information on the genetic structure of natural populations is still lacking. The present study assesses genetic variability in natural populations of the gray wolf.

Materials and methods

Tissue samples were obtained from heads or whole carcasses of gray wolves (n = 188) brought by hunters and trappers to offices of the Department of Renewable Resources, Government of the Northwest Territories, from November 1986 through March 1987 and from November 1987 through March 1988. Wolves from western Northwest Territories and from northern Yukon Territory of Canada (Fig. 1) were represented in the samples (additional information is given in Clarkson and Liepins 1989a, 1989b). Skeletal muscle (n = 187), liver (n = 57), and kidney (n = 61) were separated into protein fractions by starch-gel electrophoresis through three buffer systems: JRP (Ayala et al. 1972); continuous tris-citrate, pH 8.0 (Selander et al. 1971); and lithium

Table 1. Allele frequencies for five polymorphic loci and average individual heterozygosity for various groupings of samples (= sampling unit) of Canis lupus from northwestern Canada

			Locus ^a					Heterozygosity	
Sampling unit	n	Allele	Aat-1	Мрі	Gpi	Pgm-1	Me-1	A	В
1987	105	1 2 3	0.52 0.48	0.89	0.05 0.86 0.09	0.98	0.03 0.97	0.215	0.029
1988	83	1 2 3	(0.495) 0.52 0.48	0.219) 0.86 0.14	(0.257) 0.06 0.72 0.22	1.00	(0.067) 0.02 0.98	0.231	0.031
Combined years	188	1 2 3	0.470) 0.52 0.48	0.193) 0.88 0.12	(0.446) 0.05 0.80 0.15	0.99	(0.048) 0.03 0.97	0.222	0.030
Males	55	1 2 3	0.493) 0.52 0.48	0.85 0.15 (0.273)	(0.340) 0.08 0.85 0.07 (0.236)	0.021) 0.99 0.01 (0.018)	(0.059) 0.07 0.93 (0.170)	0.245	0.033
Tuktoyaktuk	93	1 2 3	0.527) 0.48 0.52 (0.527)	0.88 0.12 (0.247)	0.05 0.77 0.18 (0.376)	0.98 0.02 (0.032)	0.05 0.95 (0.097)	0.256	0.035
Paulatuk	25	1 2 3	0.62 0.38 (0.520)	0.96 0.04 (0.080)	0.88 0.12 (0.240)	0.98 0.02 (0.040)	1.00	0.176	0.024
Rendezvous Lake – Tadenet Lake	14	1 2 3	0.68 0.32 (0.500)	1.00	0.07 0.71 0.22 (0.571)	1.00	1.00	0.214	0.029
Inuvik	10	1 2 3	0.75 0.25 (0.300)	0.80 0.20 (0.400)	0.85 0.15 (0.300)	1.00	1.00	0.200	0.027
Aklavik	18	1 2 3	0.31 0.69 (0.389)	0.81 0.19 (0.278)	0.17 0.80 0.03 (0.167)	1.00	0.06 0.94 (0.111)	0.189	0.026
Fort McPherson	4	1 2 3	0.63 0.37 (0.750)	1.00	0.12 0.88 (0.250)	1.00	1.00	0.200	0.027
Fort Good Hope – Norman Wells	8	1 2 3	0.56 0.44 (0.625)	0.62 0.38 (0.000)	0.06 0.81 0.13 (0.375)	1.00	1.00	0.200	0.027
Fort Franklin	4	1 2 3	0.62 0.38 (0.250)	0.75 0.25 (0.500)	0.88 0.12 (0.250)	1.00	1.00	0.200	0.027
Fort Norman	3	1 2 3	0.50 0.50 (0.333)	1.00	0.67 0.33 (0.667)	1.00	1.00	0.200	0.027
Region 1	142	1 2 3	0.54 0.46 (0.507)	0.90 0.10 (0.204)	0.04 0.79 0.17 (0.366)	0.99 0.01 (0.028)	0.03 0.97 (0.063)	0.234	0.032

TABLE 1 (concluded)

Sampling unit			Locus ^a					Heterozygosity	
	n	Allele	Aat-1	Мрі	Gpi	Pgm-1	Me-l	A	В
Region 2	15	1			0.03			0.200	0.027
		2	0.57	0.73	0.80	1.00	1.00		
		3	0.43	0.27	0.17				
			(0.467)	(0.133)	(0.400)				
Region 3	22	1			0.16		0.04	0.191	0.026
		2	0.36	0.84	0.82	1.00	0.96		
		3	0.64	0.16	0.02				
			(0.455)	(0.227)	(0.182)		(0.091)		

NOTE: For explanation of locus abbreviations see text. Alleles are numbered sequentially on the basis of the rate of migration of the corresponding electromorph (1 = fastest migration). The common allele is designated 2. Heterozygosity was calculated by direct count, excluding (A) and including monomorphic loci (B).

^aNumbers in parentheses are the heterozygosity values for polymorphic loci of each sampling unit.

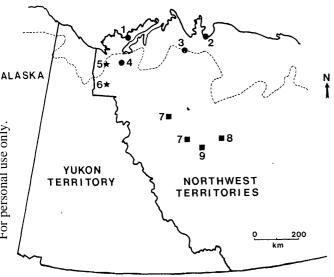


FIG. 1. Collection stations for *Canis lupus* from northwestern Canada. Locations are as follows: 1, Tuktoyaktuk; 2, Paulatuk; 3, Rendezvous Lake and Tadenet Lake; 4, Inuvik; 5, Aklavik; 6, Fort McPherson; 7, Fort Good Hope and Norman Wells; 8, Fort Franklin; 9, Fort Norman. Collection stations marked by a solid circle represent region 1, those marked by a square represent region 2, and those marked by a star represent region 3 (for explanation of regions see the text). The broken line denotes the northern limit of wooded country.

hydroxide (Ridgway et al. 1970). Proteins (following Harris and Hopkinson 1976, except where noted) examined, with designations of loci in parentheses, were as follows: acid phosphatase (Ap), aconitate aminotransferase (Acon), adenosine deaminase (Ada), adenylate kinase (Ak), alcohol dehydrogenase (Adh), aspartate aminotransferase (Aat-1 and Aat-2), creatine kinase (Ck), NADH diaphorase (Dia), esterase (Es, α -naphthol proprionate as substrate), fumarate hydratase (Fh), general proteins (Gp-1, Gp-2, Gp-3, and Gp-4; Selander et al. 1971), glucose phosphate isomerase (Gpi), β -glucuronidase (Gus), α -glycerophosphate dehydrogenase (Gpd; Selander et al. 1971). isocitrate dehydrogenase (Icd-1 and Icd-2), lactate dehydrogenase (Ldh-1 and Ldh-2), leucine aminopeptidase (Lap; Selander et al. 1971), malate dehydrogenase (Mdh-1 and Mdh-2), malic enzyme (Me-1 and Me-2), mannose phosphate isomerase (Mpi), menadione reductase (Mnr; Conkle et al. 1982), nucleoside phosphorylase (Np), phosphogluconate dehydrogenase (Pgd), phosphoglucomutase (Pgm-1, Pgm-2, and Pgm-3), peptidase (Pep-1, Pep-2, and Pep-3, leucyl-alanine, leucyl-glycylglycine, and phenylalanyl-proline as substrates), superoxide dismutase (Sod), and sorbital dehydrogenase (Sordh). For protein systems governed by multiple loci, loci were numbered sequentially, from the most anodally to the most cathodally migrating protein product.

Allele frequencies, heterozygosity (direct-count estimate) for polymorphic loci, Hardy-Weinberg equilibrium, χ^2 contingency analysis, Wright's F-statistics (Wright 1965, 1978; Nei 1977), hierarchical analysis (Wright 1978), and Rogers' genetic similarity coefficients (Rogers 1972) were determined with the program BIOSYS-1 (Swofford and Selander 1981). Polymorphic loci (frequency of the common allele less than 0.99) that were consistently scorable were used in data analyses. Individuals were grouped by year of collection for temporal analysis and by sex (with unknowns excluded) for sexual analysis. Individuals were also grouped by sex and year (four groups) for analysis. Because of small sample sizes, individuals were not partitioned by locality for sexual or temporal analyses; however, sample sizes for one area were sufficient for partitioning individuals within that sample by sex and year for analysis. Spatial differences were assessed by treating communities as different population subunits (nine) of the total and by grouping samples into three regions (Fig. 1). Although subunits may not have represented exclusive populations, regions probably represented three large populations. Region 1 represented wolves taken on the delta or barren ground and associated with the Bluenose caribou herd (Rangifer tarandus groenlandicus); region 2 represented wolves in wooded country which are associated with the Woodland caribou (R. t. caribou) and the Bluenose caribou herd; region 3 represented wolves in the area of the Richardson Mountains, which are associated with the Porcupine caribou herd (R. t. granti; Bergerud 1978; Miller 1982). Samples without a community designation were excluded from spatial analyses.

Results

Of 27 protein systems examined, 25, representing 37 presumptive loci, were consistently scorable (excludes Adh and Dia). Multiple esterases were observed from liver samples; however, only one locus was consistently expressed in muscle samples. Only one esterase exhibited polymorphism; this esterase was expressed only in liver samples and was not consistently scorable, owing to denaturation. Adh and Dia were also only detected in liver but were not consistently scorable for most samples, owing to denaturation. Polymorphism was present for Dia. Polymorphism appeared to be present for Adh; however, some interpretations of electromorphs were questionable. Five polymorphic loci (Aat-1, Mpi, Gpi, Pgm-1, Me-1) were used in subsequent analyses. The Gpi locus expressed three alleles, while the other four loci expressed two alleles each. The percentage of polymorphic loci was 17.9 on the basis of seven polymorphic loci (includes Dia and the polymorphic Es) and 13.5 on the basis of five polymorphic loci.

Table 2. Wright's F-statistics for Canis lupus from northwestern Canada grouped into eight subunits and three regions

Grouping	Locus	F_{IS}	$F_{\rm IT}$	$F_{\rm ST}$	P
Subunits	Aat-1	-0.014	0.048	0.062*	0.023
	Mpi	0.150	0.268	0.138*	0.004
	Gpi	-0.143	-0.084	0.052	0.099
	Pgm-1	-0.019	-0.004	0.014	0.976
	Me-1	-0.055	-0.012	0.041	0.536
	Total	-0.023	0.053	0.074*	0.011
Regions	Aat-1	0.015	0.048	0.033	0.077
	Mpi	0.329	0.351	0.032*	0.024
	\dot{Gpi}	0.031	0.054	0.024*	0.003
	Pgm-1	-0.014	-0.005	0.009	0.590
	Me-1	-0.041	-0.026	0.014	0.527
	Total	0.094	0.120	0.029*	0.002

Note: For explanation of locus abbreviations see the text. Probability values are from χ^2 contingency analysis.

No significant differences (χ^2 contingency analysis; P > 0.05) were detected between sexes or between years (allele frequencies and observed heterozygosity are given in Table 1). Rogers' coefficient of genetic similarity (S) was 0.966 between males and females and 0.960 between years. χ^2 contingency analysis of individuals grouped by sex and year yielded no significant differences among groups; this was also the result when only individuals from Tuktoyaktuk were examined. Therefore, data for different years and sexes were combined for further analyses.

The level of observed heterozygosity for the total sample of wolves was 3.0% over 37 loci (22.2% over 5 polymorphic loci). Major contributors to heterozygosity were *Aat-1*, *Mpi*, and *Gpi* (Table 1). *Me-1* and *Pgm-1* were only slightly polymorphic. For four polymorphic loci, one allele greatly predominated; however, frequencies of the two alleles for *Aat-1* were nearly equal (Table 1).

Spatial heterogeneity in allele frequencies and heterozygosity was present among the nine subunits (Table 1). Levels of observed heterozygosity varied from 2.4 to 3.5%, with a mean of 2.8% over 37 loci. All subunits except Tuktoyaktuk had similar levels of heterozygosity. Significant deviation from Hardy-Weinberg equilibrium was observed for Gpi in the Aklavik subunit (P = 0.048; heterozygote deficiency and a deficiency of homozygotes of the two less common alleles) and for Mpi in the Fort Good Hope – Norman Wells subunit (P =0.002; heterozygote deficiency). F_{IS} and F_{IT} values (Table 2) indicate a slight excess of heterozygotes (negative values) for most loci. The overall degree of differentiation among subunits was 0.074 (significantly different from zero at $P \le 0.05$), with the highest levels at *Mpi* and *Aat-1* (Table 2). Relationships among subunits, based on Roger's genetic similarity coefficients (ranging from 0.843 to 0.962), are presented in Fig. 2. The separation of Aklavik from the other subunits is primarily due to its frequency of the common allele (0.306) for Aat-1, which was the lowest among the subunits. The grouping of Inuvik with Fort Franklin and Fort Good Hope – Norman Wells separately from the five subunits in the larger cluster reflects lower frequencies of the common allele at Mpi. Regions also exhibited spatial differences in allele frequencies and levels of heterozygosity over 37 loci (Table 1). Regions 2 and 3 exhibited similar levels of heterozygosity, which were slightly lower than that for region 1. Region 2 deviated significantly (P = 0.006) from Hardy–Weinberg equilibrium at *Mpi* (heterozygote deficiency).

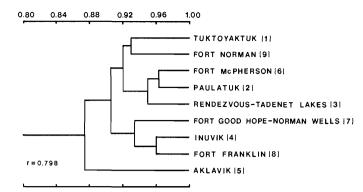


FIG. 2. Relationships among groupings of *Canis lupus* based on Rogers' coefficient of genetic similarity. Locality numbers (in parentheses) correspond to those in Fig. 1.

This is reflected in the positive $F_{\rm IS}$ and $F_{\rm IT}$ values for Mpi (Table 2). The overall level of differentiation among regions was 0.029 (significantly different from zero); the greatest level was at Aat-1 and Mpi (Table 2). χ^2 contingency tests indicate significant (P < 0.05) differentiation among regions for Mpi, Gpi, and the total five loci (Table 2). For Aat-1, the P value was greater than 0.05 but less than 0.10. Rogers' coefficient of genetic similarity was highest between regions 1 and 2 (S = 0.952). The similarity between regions 3 and 1 (S = 0.920) was greater than that between regions 3 and 2 (S = 0.902). Region 3 differs from the other regions primarily in allele frequencies at Aat-1 and Gpi.

Hierarchical analysis indicated only slightly more diffentiation among subunits within regions ($F_{\rm SR}=0.026$) than among subunits within the total sample ($F_{\rm ST}=0.020$). These levels were greater than that among regions within the total sample ($F_{\rm RT}=0.000$).

Discussion

Protein variation observed in the present study generally agrees with available information for the gray wolf. Mardini (1984) examined electrophoretic patterns of general proteins for 20 gray wolves from eastern Canada and found no variation. General proteins for gray wolves from northwestern Canada were also invariant. Braend and Roed (1987) noted transferrin and esterase (blood) polymorphism in 146 gray wolves from Alaska; this polymorphism, however, was detected with isoelectric focusing. Twenty-three protein systems of the present study were also examined by Fisher et al. (1976) for eight gray wolves from zoos and four from Minnesota. Of these systems, results for three differ between the two studies: Aat, Gpi, and Me were polymorphic in the present investigation but are reported as monomorphic in gray wolves by Fisher et al. (1976). Sampling error may account for the difference. Examination of one sample from Minnesota along with samples from the present study revealed heterozygous genotypes at Aat-1, Gpi, and Mpi for alleles present in Canadian wolves. Polymorphism for Dia, Es, Mpi, and Pgm in gray wolves was detected in both studies. Wayne and O'Brien (1987) also indicated Mpi and Pgm variation for one wolf from a zoo. Fisher et al. (1976) noted polymorphism at adenosine phosphoribosyltransferase which was not examined in the present study. The present study included Fh, Gus, Lap, and Mnr, which were not examined by Fisher et al. (1976); these proteins were invariant. The overall percentage of polymorphic loci determined for wolves in northwestern Canada (13.5 and 17.9%) is higher than the 11.3% reported by Fisher et al. (1976).

^{*} $F_{\rm ST}$ significantly (P < 0.05) different from zero.

KENNEDY ET AL. 1187

The overall level of heterozygosity (3.0%) for wolves from northwestern Canada is slightly higher than the 2.8% calculated from data given in Fisher et al. (1976). The value of 3.0% is an underestimate, since Dia and Es were not included in its calculation. If heterozygosity at Dia and Es is at least at the level reported by Fisher et al. (1976), the average value for Canadian wolves would be approximately 3.6%. Average heterozygosity values of 0.0 and 0.9% have been reported for natural populations of Vulpes vulpes (Simonsen 1982) and Canis latrans (Hamilton and Kennedy 1986), repectively. Values (excluding that of Mitton and Raphael 1990) for natural populations of other families of Carnivora range from 0.0 to 8.0%, with most less than 3.0% (Allendorf et al. 1979; Beck and Kennedy 1980; Dew and Kennedy 1980; Hamilton and Kennedy 1987; Manlove et al. 1980; Simonsen 1982; Wathen et al. 1985). Mitton and Raphael (1990) reported an unusually high level of heterozygosity (17.0%) for 10 Martes americana from a single locality and suggested that "sampling of related individuals may have inflated the estimate of heterozygosity." The degree of heterozygosity in natural populations of wolves is medial relative to that of natural populations of Carnivora and high relative to that of natural populations of canids.

Hamilton and Kennedy (1986) observed a general pattern of heterozygote deficiency and statistically significant differentiation among populations of C. latrans. Another carnivore, Procyon lotor, also exhibited this pattern (Hamilton and Kennedy 1987). Wolves from northwestern Canada exhibited minimal deviations from Hardy-Weinberg expectations. A slight excess of heterozygotes was indicated for most of the polymorphic loci. The observed heterozygote deficiency for Mpi and Gpi may simply be due to sampling error or to combining members of genetically different packs (Wahlund effect; Wahlund 1928; Chesser 1983). The level of differentiation mong subunits of C. Lupus ($F_{ST} = 0.074$) is comparable to that mong populations of C. Latrans in Tennessee ($F_{ST} = 0.080$; Hamilton and Kennedy 1986) and P. Lotor in the southeastern E ($E_{ST} = 0.112$ and 0.068) and porthyestern ($E_{ST} = 0.072$) United minimal deviations from Hardy-Weinberg expectations. A but much less than that among P. lotor in the eastern $(F_{ST} = 0.208)$ United States and across the United States $(F_{ST} = 0.374;$ Hamilton and Kennedy 1987). Considerably less differentiation was present among wolves from different regions $(F_{ST} = 0.029)$. Although statistically significant, the level of differentiation $\stackrel{-}{\otimes}$ tion among wolves from different regions is low (<0.05; Hartl N 1980). Thus, wolves associated with different caribou herds ightharpoonup were generally similar. The differences that were present may Fireflect sampling error within each region, since hierarchical analysis indicates as much differentiation among all subunits as among subunits within each region. Wolves were genetically similar across most of the study area. A moderate level of differentiation (0.05–0.15; Hartl 1980) existed among wolves of different subunits. Differences were mainly between wolves from Aklavik and those from other parts of the study area.

The pattern of genetic variability in the wolves from northwestern Canada does not support the hypothesis that gray wolves are a highly inbred species because of their social structure (Chesser 1983; Foltz and Hoogland 1983; Patton and Feder 1981; Schwartz and Armitage 1980). Wolf populations are quite dynamic, with packs continually forming and dissolving as a result of natural and human (hunting and trapping) disruptions (Mech 1970; Paradiso and Nowak 1982; Clarkson and Liepins 1989a, 1989b). Observations showed extensive movement of wolves throughout the study area and considerable changes in pack structure (Clarkson and Liepins 1989a, 1989b).

Many packs have split and moved to a new area; some males have associated with two or three different packs. Hunting and trapping have disrupted some packs and pack formation, causing some wolves to join other packs. Reproduction by more than one adult female per pack has also been observed in the study area by Clarkson and Liepins (1989a, 1989b). These observations of the natural ecology of wolves in the study area suggest a large panmictic population, a view suppoted by the genetic

The genetic structure of individual wolf packs could not be examined using the data set of the present study. However, the heterozygosity observed for subunits and regions does not suggest intense inbreeding. Adjacent packs of wolves could be genetically distinct from each other as a result of genetic differences between founding individuals (Wright 1978) rather than random genetic drift toward fixation of alternate alleles as a result of inbreeding, as proposed by Woolpy and Eckstrand (1979) for stable packs.

Although the present study deals with wolves subjected to considerable hunting and trapping pressure, a similar pattern of genetic variability may characterize populations that are not greatly impacted by hunting and trapping. Natural pack disruption and movements of wolves may allow enough genetic exchange in an area to prevent allelic fixation within a pack as a result of random genetic drift and to produce the levels of heterozygosity and genetic similarity observed in our study.

Acknowledgements

Members of the Wildlife Management Advisory Council, the Inuvialuit Game Council, and the Hunters and Trappers Committees at Tuktoyaktuk, Paulatuk, Aklavik, and Inuvik are thanked for their interest, cooperation, and support of research on wolves in the Inuvialuit settlement area. Special appreciation is extended to the hunters and trappers from communities in the study area for their help with collection of skulls and carcasses. Officers of the Department of Renewable Resources, Government of The Northwest Territories, assisted with the collection of skulls and carcasses and provided general information on wolves and their harvest. We thank M. C. Wooten for technical assistance with some computer analyses and M. J. Hamilton for reviewing an earlier version of the manuscript.

ALLENDORF, F. W., CHRISTIANSEN, F. B., DOBSON, T., EANES, W. F., and FRYDENBERG, O. 1979. Electrophoretic variation in large mammals. I. The polar bear, Thalarctos maritimus. Hereditas, 91: 19-22.

AYALA, F. J., POWELL, J. R., TRACEY, M. L., MOURAO, C. A., and PEREZ-SALAS, S. 1972. Enzyme variability in the Drosophila willistoni group. IV. Genic variation in populations of Drosophila willistoni. Genetics, 70: 113-139.

BECK, M. L., and KENNEDY, M. L. 1980. Biochemical genetics of the raccoon, Procyon lotor. Genetica, 54: 127-132.

BERGERUD, A. T. 1978. Caribou. In Big game of North America: ecology and management. Edited by J. L. Schmidt and D. L. Gilbert. Stackpole Books, Harrisburg, PA. pp. 83–101.

BRAEND, M., and ROED, K. H. 1987. Polymorphism of transferrin and esterase in Alaskan wolves: evidence of close molecular homology with the dog. Anim. Genet. 18: 143-148.

CHESSER, R. K. 1983. Genetic variability within and among populations of the black-tailed prairie dog. Evolution, 37: 320–331.

CLARK, P., RYAN, G. E., and CZUPPON, A. B. 1975. Biochemical genetic markers in the family Canidae. Aust. J. Zool. 23: 411–417.

CLARKSON, P. L., and LIEPINS, I. S. 1989a. Inuvialuit wildlife studies: Western Arctic wolf research project progress report, 1987-1988. Available from the Department of Renewable Resources, Government of the Northwest Territories, Inuvik, N.W.T., Canada X0E

- 1989b. Inuvialuit wildlife studies: Western Arctic wolf research project progress report, 1988-1989. Available from the Department of Renewable Resources, Government of the Northwest Territories, Inuvik, N.W.T., Canada X0E 0T0.
- CONKLE, M. T., HODGSKISS, P. D., NUNNALLY, L. B., and HUNTER, S. C. 1982. Starch gel electrophoresis of conifer seeds: a laboratory manual. USDA For. Serv. Gen. Tech. Rep. PSW-64.
- DEW, R. D., and KENNEDY, M. L. 1980. Genic variation in the raccoon, *Procyon lotor*. J. Mammal. **61**: 697–702.
- FERRELL, R. E., MORIZOT, D. C., HORN, J., and CARLEY, C. J. 1980. Biochemical markers in a species endangered by introgression: the red wolf. Biochem. Genet. 18: 39–49.
- FISHER, R. A., PUTT, W., and HACKE, E. 1976. An investigation of the products of 53 gene loci in three species of wild Canidae: *Canis lupus*, *Canis latrans*, and *Canis familiaris*. Biochem. Genet. 14: 963–974.
- FOLTZ, D. W., and HOOGLAND, J. L. 1983. Genetic evidence of outbreeding in the black-tailed prairie dog (*Cynomys ludovicianus*). Evolution, 37: 273–281.
- HARRIS, H., and HOPKINSON, D. A. 1976. Handbook of enzyme electrophoresis in human genetics. North-Holland Publishing Co., Amsterdam.
- HARTL, D. L. 1980. Principles of population genetics. Sinauer Associates, Sunderland, MA.
- MANLOVE, M. N., BACCUS, R., PELTON, M. R., SMITH, M. H., and GRABER, D. 1980. Biochemical variation in the black bear. *In* Bears—their Biology and Management. Bear Biol. Assoc. Conf. Ser. Publ. No. 3, U.S. Government Printing Office, Washington, DC. pp. 37–41.
- MARDINI, A. 1984. Species identification of tissues of selected mammals by agarose gel electrophoresis. Wildl. Soc. Bull. 12: 249–251.
- MECH, L. D. 1970. The wolf: the ecology and behavior of an endangered species. The Natural History Press, Garden City, NY.
- MILLER, F. L. 1982. Caribou, Rangifer tarandus. In Wild mammals of North America; biology, management, and economics. Edited by J. A. Chapman and G. A. Feldhamer. The Johns Hopkins University Press, Baltimore, MD. pp. 923–959.
- MITTON, J. B., and RAPHAEL, M. G. 1990. Genetic variation in the marten, *Martes americana*. J. Mammal. **71**: 195-197.
- NEI, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann. Hum. Genet. **41**: 225–233.
- NOBREGA, F. G., MAIA, J. C. C., COLLI, W., and SALDANHA, P. H. 1970. Heterogeneity of erythrocyte glucose-6-phosphate dehydrogenase (G6PD, E.C. 1.1.1.49) activity and electrophoretic patterns among representatives of different classes of vertebrates. Comp. Biochem. Physiol. 33: 191–199.
- PARADISO, J. L., and NOWAK, R. M. 1982. Wolves, *Canis lupus* and allies. *In* Wild mammals of North America: biology, management, and economics. *Edited by* J. A. Chapman and G. A. Feldhamer. The Johns Hopkins University Press, Baltimore, MD. pp. 460–474.

- PATTON, J. L., and FEDER, J. H. 1981. Microspatial genetic heterogeneity in pocket gophers: non-random breeding and drift. Evolution, 35: 912–920.
- RIDGWAY, G. J., SHERBURNE, J. W., and LEWIS, R. D. 1970. Polymorphism in the esterases of Atlantic herring. Trans. Am. Fish. Soc. 99: 147–151.
- ROGERS, J. S. 1972. Measures of genetic similarity and genetic distance. Univ. Texas Publ. No. 7213: 145-153.
- SCHWARTZ, O. A., and ARMITAGE, K.B. 1980. Genetic variation in social mammals: the marmot model. Science (Washington, D.C.), 207: 665–667.
- SEAL, U. S. 1969. Carnivora systematics: a study of hemoglobins. Comp. Biochem. Physiol. 31: 799–811.
- 1975. Molecular approaches to taxonomic problems in the Canidae. *In* The wild canids: their systematics, behavioral ecology and evolution. *Edited by* M. W. Fox. Van Nostrand Reinhold Co., New York. pp. 27–39.
- SELANDER, R. K., SMITH, M. H., YANG, S. Y., JOHNSON, W. E., and GENTRY, J. B. 1971. Biochemical polymorphism and systematics in the genus *Peromyscus*. I. Variation in the old-field mouse (*Peromys-cus polionotus*). Univ. Texas Publ. No. 7103. pp. 49–90.
- SEROV, O. L., ZAKIYAN, S. M., KHLEBODAROVA, T. M., and KORCHKIN, L. I. 1976. Allelic expression in intergeneric fox hybrids (Alopex lagopus × Vulpes vulpes). I. Comparative electrophoretic studies on blood enzymes and proteins in arctic and silver foxes. Biochem. Genet. 14: 1091–1103.
- SIMONSEN, V. 1976. Electrophoretic studies on the blood proteins of domestic dogs and other Canidae. Hereditas, 82: 7-18.
- The red fox, Vulpes vulpes, the stoat, Mustela erminea, the weasle, Mustela nivalis, the pole cat, Mustela putorius, the pine marten, Martes martes, the beech martgen, Martes foina, and the badger, Meles meles. Hereditas, 96: 299-305.
- SWOFFORD, D. R., and SELANDER, R. 1981. BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281–283.
- WAHLUND, S. 1928. Zusammensetzung von Populationen und Korrelationersscheinungen vom Standpunkt der Verebungslehre ausbetrachtet. Hereditas, 11: 65–106.
- WATHEN, W. G., MCCRACKEN, G. F., and PELTON, M. R. 1985. Genetic variation in black bears from the Great Smoky Mountains National Park. J. Mammal. 66: 564–567.
- WAYNE, R. K., and O'BRIEN, S. J. 1987. Allozyme divergence within the Canidae. Syst. Zool. 36: 339–355.
- WOOLPY, J. H., and ECKSTRAND, I. 1979. Wolf pack genetics, a computer simulation with theory. *In* The behavior and ecology of wolves. *Edited by* E. Klinghammer. Garland STPM Press, New York. pp. 206–224.
- WRIGHT, S. 1965. The interpretation of population structure by *F*-statistics with special regard to systems of mating. Evolution, 9: 395–420.
- —— 1978. Evolution and the genetics of populations. IV. Variability within and among natural populations. University of Chicago Press, Chicago.